
Intro
Components

Current Status

AFS/Web
AFS file access through the web, a good idea ?

A. Mancini1 M. Masi2

1Dipartmento di Matematica “U.Dini”
Università degli Studi di Firenze

2Dipartiemento di Sistemi e Informatica
Università degli Studi di Firenze

European AFS meeting 2009 Roma, September 28-30

Mancini,Masi AFS/Web

Intro
Components

Current Status

What, Why, How
General structure

What & Why

Authenticated access to the filesystem through the “web”

This is going to become a major request of users:
a web interface usable from everywhere, even a InternetCafè

Why a new project
authentication at application level
a rich-web-interface
something we can integrate with existing/in development
web interfaces
It is FUN :)

Mancini,Masi AFS/Web

Intro
Components

Current Status

What, Why, How
General structure

What & Why

Authenticated access to the filesystem through the “web”

This is going to become a major request of users:
a web interface usable from everywhere, even a InternetCafè

Why a new project
authentication at application level
a rich-web-interface
something we can integrate with existing/in development
web interfaces
It is FUN :)

Mancini,Masi AFS/Web

Intro
Components

Current Status

What, Why, How
General structure

What & Why

Authenticated access to the filesystem through the “web”

This is going to become a major request of users:
a web interface usable from everywhere, even a InternetCafè

Why a new project
authentication at application level
a rich-web-interface
something we can integrate with existing/in development
web interfaces
It is FUN :)

Mancini,Masi AFS/Web

Intro
Components

Current Status

What, Why, How
General structure

... some considerations

Web Browsers are just EVIL

not two browsers have similar javascript interpreters

POST/GET Urlencoding/Multipart Syncronous/AJAX ...

use a high level library: GWT

do not rely on the web interface, finally it is just a GUI

How

1 delegate authentication to a dedicated service (Identity Provider)

2 provide access to the filesystem only through specific services
(FileProviders)

3 adopt a standard (SAML in our case) for exchanging security
assertions

Mancini,Masi AFS/Web

Intro
Components

Current Status

What, Why, How
General structure

... some considerations

Web Browsers are just EVIL

not two browsers have similar javascript interpreters

POST/GET Urlencoding/Multipart Syncronous/AJAX ...

use a high level library: GWT

do not rely on the web interface, finally it is just a GUI

How

1 delegate authentication to a dedicated service (Identity Provider)

2 provide access to the filesystem only through specific services
(FileProviders)

3 adopt a standard (SAML in our case) for exchanging security
assertions

Mancini,Masi AFS/Web

Intro
Components

Current Status

What, Why, How
General structure

... some considerations

Web Browsers are just EVIL

not two browsers have similar javascript interpreters

POST/GET Urlencoding/Multipart Syncronous/AJAX ...

use a high level library: GWT

do not rely on the web interface, finally it is just a GUI

How

1 delegate authentication to a dedicated service (Identity Provider)

2 provide access to the filesystem only through specific services
(FileProviders)

3 adopt a standard (SAML in our case) for exchanging security
assertions

Mancini,Masi AFS/Web

Intro
Components

Current Status

What, Why, How
General structure

The big picture

User's
Browser FileAccess

Console
FileProvider
WebService

FileProvider
WebService

FileProvider
WebService

AFS
servers

AFS ClientsWEB Servers

WebService
client

share signing
credentials share encryption credentials

SOAP

SAML Identity
Provider

(Kerberized)

https

https

SA
M

L
(P

O
ST

)

Mancini,Masi AFS/Web

Intro
Components

Current Status

What, Why, How
General structure

The big picture: code (to be) written

User's
Browser FileAccess

Console
FileProvider
WebService

FileProvider
WebService

FileProvider
WebService

AFS
servers

AFS ClientsWEB Servers

WebService
clientJavascript (GWT)

Java

Java, already used
in many scenarios

(masi@math.unifi.it)

SAML Identity
Provider

(Kerberized)

Java/Axis2 for WebServices
jni/jna/C for afs access

we need a modified AFS client

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

FileProvider
Very simple object: (almost) standard OpenAFS clients.

1 receive a request
1 “enter” in a PAG
2 authenticate
3 operate on file-system
4 trash authenticated state

2 stream response

for definitions enthusiasts:
Fileproviders expose the
filesystem as WebService.

Impl’d with apache’s Axis2.

stateless

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

FileProvider
Very simple object: (almost) standard OpenAFS clients.

1 receive a request
1 “enter” in a PAG
2 authenticate
3 operate on file-system
4 trash authenticated state

2 stream response

for definitions enthusiasts:
Fileproviders expose the
filesystem as WebService.

Impl’d with apache’s Axis2.

stateless

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

FileProvider
Stateless WebService for a Price

Stateless
have to reauthenticate on each run

WS communicate through XML

must use SOAP MTOM (overhead in binary data delivery)
have to provide a format (schema) for messages
<fpns:getDirectoryListing>

<fpns:path>/math.unifi.it/.../afsbp</fpns:path>
</fons:getDirectoryListing>

<fpns:directoryListing>
<fpns:directory>Tutorial</fpns:directory>
<fpns:directory>Notes</fpns:directory>
...
<fpns:file fpns:mime="...">slides.eps</fpns:file>

</fpns:getFile>

Gain ? JSON may be an option using Axis2

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

FileProvider
Very simple object: (almost) standard OpenAFS clients.

1 receive a request
1 “enter” in a PAG
2 authenticate
3 operate on file-system
4 trash authenticated state

2 stream response

for definitions enthusiasts:
Fileproviders expose the
filesystem as WebService.

Impl’d with apache’s Axis2.

stateless

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

FileProvider
PAG/Authenticate

... run in an application server (tomcat, jboss) and thread pools are
mandatory for performance (mostly impossible to do without) ...

associate (P)AG to threads

We have a working implementation for the linux kernel using keyrings,
sent to openafs-devel for comments.
(else we may end up with the entire threads-pool sharing credentials)

JAFS
Not ready for Kerberos authentication, update available.

TODO:
Why not trying to use user-space-openafs-client ?

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

FileProvider
Very simple object: (almost) standard OpenAFS clients.

1 receive a request
1 “enter” in a PAG
2 authenticate
3 operate on file-system
4 trash authenticated state

2 stream response

for definitions enthusiasts:
Fileproviders expose the
filesystem as WebService.

Impl’d with apache’s Axis2.

stateless

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

FileProvider
Operating on the Filesystem

Java⇐⇒ afs
accessing files does not require any special care (as long
as we use in kernel cache mgr)
accessing ACL’s, FIDs, Volumes does require special
treatment
honestly, my feeling is that JAFS does its work (?)

Question:
Updating JAFS or rewriting (so we can support uafs too) ?

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

FileProvider

Webservice

native
auth(cell,realm,...,TOKEN)

afs
thread keyring

exists ?

create
new AG

linux's keyutils

current openafs
setpag with minor

changes

cond_getAG

prepare
ktc_principal aclient, aserver
ktc_token atoken

ktc_SetToken(...,0)

setAuth

InFlow Handler

the thread is authenticated

service

...

...

JNI

service

...

native unlog()

OutFlow Handler

the thread is NOT authent'd

JNI...

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

Token ?

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

The Problem

Nowadays, we have dozens digital
identities

Username and password for
the webmail account

Username and password for
the bank account

Username and password for
frequent flyer status

A Kerberos account for the
domain’s workstation

A key pair for signing
documents

. . .

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

The current solution: a new abstraction layer (?)

Security Assertion Markup Language (SAML) (OASIS)
SAML is a method for encoding security assertions (i.e.
tokens) in XML, and a method (i.e. a protocol) to exchange
such assertions.

KerberosUsername / Password Federated Environment

Abstraction Layer (SAML, WS-Trust)

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

The Identity Provider

The Identity Provider is a service that provide a trusted
identity to a set of nodes, by asserting an authentication
made in the past by an underlying mechanism (such as
kerberos)
From 10.000 feets, SAML indicates that an authentication
have been performed by a certain user. It writes it in an
XML document, to be sent over the network, using SOAP
or whatever else.
The transport mechanism (and other implementation
details) are written in SAML Profiles (for SOAP, HTTP, Web
Browser)

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

Web Browser SSO Profile for SAML2

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

Our identity provider

Once received the username and password, IdP authenticates
user against the KDC:

String cachename =
"krb5_cache_"+UUIDGenerator.getUUID();
KrbAcquireTGT krbClient = new KrbAcquireTGT();
Long stoptime = 2000L; //2 Seconds, anybody knows why?

Then we get the TGS for the AFS service and we convert it into
a token, then we represent the token as an XML document

<tns:AFSToken xmlns:tns="urn:it.unifi.math:AFS">
<tns:Principal>...</tns:Principal>
<tns:StartTime>1253699537</tns:StartTime>
<tns:EndTime>1253735535</tns:EndTime>
<tns:SessionKey>....</tns:SessionKey>
<tns:Ticket>..........</tns:Ticket>

</tns:AFSToken>

finally we encrypt the token using the public key of the service
providers

and pack in a signed SAML assertion

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

<saml:Assertion ID="7811e9814bf51bc24318030c593375af"
IssueInstant="2009-09-23T09:57:51.902Z" Version="2.0">

<saml:Issuer>urn:idp:math.unifi.it:identity-provider</saml:Issuer>
<ds:Signature>...</ds:Signature> <!-- signature -->
<saml:Subject>

<saml:NameID>mancini</saml:NameID>
<saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:holder-of-key">

... <!-- user principal etc... -->
</saml:Subject>
<saml:Conditions NotBefore="2009-09-23T09:57:51.902Z"

NotOnOrAfter="2009-09-23T19:57:51.902Z"> <!-- Kerberos Ticket validity -->
<saml:AudienceRestriction>

<saml:Audience>http:....</saml:Audience> <!-- web application -->
</saml:AudienceRestriction>

</saml:Conditions>
<saml:AuthnStatement AuthnInstant="2009-09-23T09:57:51.902Z"

SessionNotOnOrAfter="2009-09-23T19:57:51.902Z">
<saml:AuthnContext>

<saml:AuthnContextClassRef>
urn:oasis:names:tc:SAML:2.0:ac:classes:kerberos

</saml:AuthnContextClassRef>
</saml:AuthnContext>

</saml:AuthnStatement>
<saml:AttributeStatement>

<saml:EncryptedAttribute>...Token...</saml:EncryptedAttribute><!-- encrypted token -->
<saml:Attribute FriendlyName="REALM" Name="urn:REALM" NameFormat="urn:REALM">

<saml:AttributeValue xmlns:xs="http://ww...org/XMLSchema" xsi:type="xs:string">
MATH.UNIFI.IT

</saml:AttributeValue>
</saml:Attribute>

</saml:AttributeStatement>
</saml:Assertion>

Mancini,Masi AFS/Web

Intro
Components

Current Status

FileProvider(s)
IdP
WebInterface

Web Interface (named fileconsole)

Having

the IdentityProvider to provide SAML Assertion(s)

the FileProvider(s) that does the actual work on the filesystem

the WebInterface and has just to:

1 manage SAML assertions (entierely in the browser right now)
a sort of in browser crendentials cache

2 assist the user in creating SOAP requests and decoding
responses (and doing actual requests)

3 handle the browser (get multipart data for uploads, GWTRPC where possible, etc... repsond
correct content-data on downloads etc ...)

Some technicalities may worth a note (e.g. getting the credentials
back to the GWT application after a successfull autentication) but
there is not time now, and afterall it is not AFS stuff.

Mancini,Masi AFS/Web

Intro
Components

Current Status

Current Status

1 Not ready for Production (eclipse says: 43 TODO’s)
2 On test servers works
3 IdP works very well
4 FileProvider (No schema for communications,

authentication/(P)AGging needs test/j(u)afs issue
5 FileConsole, primitive, probably to be redesigned,

assertions vs session identifiers in browser memory

AFS file access through the web, a good idea ?

Probably, but it is a lot of work !

Mancini,Masi AFS/Web

Intro
Components

Current Status

That’s All !
How about a demo ? (https://nettunio.math.unifi.it/console)

Mancini,Masi AFS/Web

	Intro
	What, Why, How
	General structure

	Components
	FileProvider(s)
	IdP
	WebInterface

	Current Status

